
48 Informatica Economică vol. 14, no. 4/2010

Software Reliability in Semantic Web Service Composition Applications

Liviu Adrian COTFAS, Andreea DIOSTEANU
Academy of Economic Studies, Bucharest, Romania

liviu.cotfas@ase.ro, andreea.diosteanu@ie.ase.ro

Web Service Composition allows the development of easily reconfigurable applications that
can be quickly adapted to business changes. Due to the shift in paradigm from traditional sys-
tems, new approaches are needed in order to evaluate the reliability of web service composi-
tion applications. In this paper we present an approach based on intelligent agents for semi-
automatic composition as well as methods for assessing reliability. Abstract web services,
corresponding to a group of services that accomplishes a specific functionality are used as a
mean of assuring better system reliability. The model can be extended with other Quality of
Services – QoS attributes.
Keywords: Software Reliability, Web Service Composition, Intelligent Agents

Introduction
Nowadays, due to the rapid development

of the IT&C sector, almost every activity is
dependent on and influenced by the techno-
logical progress. Therefore, it became a ne-
cessity to carefully monitor and evaluate the
functionality of both hardware and software.
The evaluation consists in determining the
probability for a system to function correctly
in a predefined context, which includes
specified conditions and constraints. This
probability is known as system reliability.
One of the greatest challenges for researchers
is to create models so that to evaluate the
level of system reliability. Because, in es-
sence, the reliability evaluation function is a
probability based function, the researchers
concentrated their efforts in determining suit-
able statistical models based on probability
density for estimating software reliability [1].
Initially, models were empirical and heavily
relied on the observation of software failure.
Such approaches required a great amount of
data in order to offer fairly good predictions.
More recent research efforts have led to the
development of reliability models addressing
fault coverage, testing coverage, and imper-
fect debugging processes [2].
Many approaches in the last years have fo-
cused on developing statistical models, based
on Markov model, Halstead’s Software Met-
ric, McCabe’s Cyclamate Complexity Metric,
Poisson probability theory, time series so that
to extend the statistical models and identify

the dynamics of the software product reliabil-
ity, semi quasi renewal, etc.
This paper proposes a methodology for
evaluating and assuring reliability in seman-
tic web service composition applications
based on the concept of abstract web service.
The rest of the paper is organized as follows.
Section 2 presents several approaches and
indicators used when assessing software reli-
ability. The relation between reliability and
the Software Development Lifecycle – SDLC
is discussed in Section 3. Section 4 presents
existing web service composition ap-
proaches. An approach based on intelligent
agent search is presented in Section 5, fol-
lowed in section 6 by a model for assessing
reliability in composite web service applica-
tions.

2 Existing Models for Software Reliability
The reliability definitions given in the litera-
ture vary between different practitioners as
well as researchers. The generally accepted
definition is as follows. Reliability is the
probability of success or the probability that
the system will perform its intended function
under specified design limits. More specific,
reliability is the probability that a product or
part will operate properly for a specified pe-
riod of time (design life) under the design
operating conditions (such as temperature,
volt, etc.) without failure [2]. In other words,
reliability may be used as a measure of the
system’s success in providing its function

1

Informatica Economică vol. 14, no. 4/2010 49

properly. Mathematically, reliability can be
expressed as a time dependent probability,
where ܴሺݐሻ is the probability that the system
will be successful from the beginning until
the moment ݐ.

ܴሺݐሻ ൌ ܲሺܶ ൐ ሻ (1)ݐ

where:
ܶ – represents the failure time;
In terms of probability density the reliability
function can be expressed as follows:

ܴሺݐሻ ൌ ׬ ݂ሺݏሻ݀ݏ
ஶ

௧ (2)

where:
f(t) – density function for the failure time T;

f(t)= - ௗ

ௗ௧
ሾܴሺݐሻሿ (3)

In many cases such as when assessing the re-
liability of a web service, evaluating reliabili-
ty based on failure time is not the best option.
Evaluating reliability as the number or fail-
ures versus number of calls can offer a better
indication when evaluating web services. In
both approaches ܴ݈݁ሺݐሻ takes values in the in-
terval ሾ0,1ሿ.
As an alternative to the reliability function
[3] developed a new mathematical function
called systemability, considering the uncer-
tainty of the operational environments in the
function for predicting the reliability of sys-
tems. Systemability is defined as the proba-
bility that the system will perform its in-
tended function for a specified mission time
under the random operational environments.
In a mathematical form, the systemabililty
function is given by:

 ܴ௦ሺݐሻ ൌ ׬ ݁ିఎ ׬ ௛ሺ௦ሻௗ௦

೟
బ ሻఎߟሺܩ݀ (4)

where:
݄ሺݐሻ – hazard rate function;
 ;common environment factor – ߟ
 ;ሻ – cumulative distribution function of ηߟሺܩ
Reliability is one of the quality characteris-
tics that consumers require from the product
manufacturers. More than 30 factors influen-

cing an application’s reliability have been
identified including the Difficulty of Pro-
gramming - PDIF, the Level of Programming
Technologies - TLVL and the Percentage of
Reused Code – PORC.
Software reliability is commonly considered
when assessing the Quality of Service - QoS
associated to an application. Other aspects
taken into consideration when evaluating
QoS include: availability, accessibility, inte-
grity, performance and security [4].
Given the importance of the topic a large
number of approaches have been proposed.
In 1991, the International Organization for
Standardization (ISO) and International Elec-
trotechnical Commission (IEC) adopted
ISO/IEC 9126 as the standard for software
quality. The standard specifies external and
internal metrics that can be used to evaluate
software products. Software quality attributes
are divided in six groups (functionality, re-
liability, usability, efficiency, maintainabili-
ty, and portability), which are further subdi-
vided into sub characteristics. Software relia-
bility evaluation can take into account me-
trics such as maturity metrics, fault tolerance
metrics, recoverability metrics and com-
pliance metrics. Some of the most common
reliability measure indicators are [2]:
A. System Mean Time to Failure
SMTTF measure is one of the most widely
used reliability calculations, but also one of
the most misused calculations. It has been
misinterpreted as “guaranteed minimum life-
time”.

ܨܶܶܯܵ ൌ ׬ ݐሻ݀ݐሺ݂ݐ
ஶ

଴ (5)

where:
݂ሺݐሻ – density function for the failure time T;
B. Maintainability
Maintainability is defined as the probability
that a failed system will be restored to the
specified conditions within a given period of
time when maintenance is performed accord-
ing to prescribed procedures and resources.
In other words, maintainability is the proba-
bility of isolating and repairing a fault in a
system within a given time. Maintainability
engineers must work with system designers

50 Informatica Economică vol. 14, no. 4/2010

to ensure that the system product can be
maintained by the customer efficiently and
cost effectively. This function requires the
analysis of part removal, replacement, tear-
down, and build-up of the product in order to
determine the required time to carry out the
operation, the necessary skill, the type of
support equipment and the documentation.

ሻݐሺܯ ൌ ׬ ݏሻ݀ݏݐሺݐݏ݁ݎ
ஶ

଴ (6)

where:
 ሻ – density function for the restore timeݐሺݐݏ݁ݎ
T;

C. Availability
Since, reliability is a measure that requires
system success for complete time span that is
for the entire functioning time of the system.
Over this period of time no changes or fixes
are allowed. Availability is a measure that al-
lows for a system to repair when failure oc-
curs.

ܣ ൌ
௧ೢ೚ೝೖ೔೙೒

௧ೢ೚ೝೖ೔೙೒ା௧೏೚ೢ೙
 (7)

where:
 ௪௢௥௞௜௡௚ – period of time in which the systemݐ

is functioning;
 ௗ௢௪௡ – period of time in which the system isݐ
not functioning;

3 Assuring Reliability in the Software De-
velopment Lifecycle - SDLC
Even if in theory the reliability evaluation
process doesn’t seem very complicated, the
development of sound, complex and accurate
reliability evaluation systems requires a lot of
effort and research. This is due to the fact
that each and every software product has its
own particularities, flows, architecture, etc.
Environmental factors play a very important
part as they illustrate the usefulness of the
model and its applicability.
However, the reliability models prove their
value only if they are taken into account by
software developers. Furthermore, the reli-
ability models have an increased level of us-
ability that is users are capable to read and
understand their results. If this thing does not
happen, the reliability evaluation model can
bring disadvantages in the sense that users
lose their trust in the software product, thus
leading to sever economic and technical
problems.

Fig. 1. Methodology for reliability evaluation in connection with software product lifecycle

Therefore, developers need to first under-
stand the software product life cycle and, for

each phase, to perform empirical observa-
tions that lead to the reliability model:

Informatica Economică vol. 14, no. 4/2010 51

 ANALYSIS: this is the most important
phase because it has as output the specifi-
cations based on which the software prod-
uct is developed. During this phase, the
reliability models developers have to
clearly understand the specifications and
for each item they have to identify possi-
ble faults or misunderstandings with re-
gard to the business logic.

 DESIGN: consists of translating the busi-
ness specifications into technical ones, to
identify and create algorithms and models.
This phase has two stages: general system
architecture and detailed architecture. In
the general system architecture, designers
create the overall architecture of the prod-
uct, identify the main components and
provide a description of the manner in
which the components interact with each
other. In the detailed design they analyse
each component and provide a complete
description of the algorithm the compo-
nent will implement, constraints, require-
ments, etc. During this phase the reliabil-
ity developers have to identify the busi-
ness rules, constraints, algorithms and
create already a theoretic model that will
evaluate the risk of failure for each inde-
pendent component and also for the entire
product as a whole, considered based on
the interaction of independent compo-
nents. Furthermore, in this phase test cases
and test scenarios are also developed.

 IMPLEMENTATION: this phase con-
sists in writing the appropriate code. With
regard to reliability, the metrics and mod-
els developed in the previous phase have
to be applied after each component is
completed. If results are not satisfactory,
then code review and code refectory are
required.

 TEST: Over this phase, the test cases and
scenarios are applied. Furthermore, the re-
liability developers perform a parallel test-
ing and refining of the reliability evalua-
tion model

Figure 1 summarizes the main steps of the
proposed methodology in relation to the
software development life cycle. In web ser-
vice based application it is very important to

have a good understanding of the system
both as a whole, but also of each individual
component. If this is achieved, the reliability
evaluation model will be consistent.

4 Web Service Composition
While individual web services can be used to
accomplish specific tasks, there is a growing
need to integrate multiple services into com-
plex chains of web services. Applications
based on this approach, offer business the
possibility to quickly reconfigure their soft-
ware systems to take advantage of new mar-
ket opportunities. Compared to traditional
software approaches, web service composi-
tion allows modifying the functionality of an
application just by changing the involved
web services, without having to rewrite the
code of the application, thus reducing the
need to wait for long software release cycles
or for internal software development pro-
jects. Besides avoiding long development
times, associated development costs are also
greatly reduced [5]. Complex applications
can be seen as collections of independent
web services provided by different compa-
nies. Interoperability is thus an important as-
pect as fully integrated traditional enterprises
are being replaced by business networks in
which every company is specialized in cer-
tain services or products.
Existing approaches for web service compo-
sition can be classified in:
 Manual - Is considered both time-

consuming and error-prone. The person
performing the composition should have
advanced domain knowledge [6].

 Semi-automatic - The user is involved to
ensure the validity of the generated flow
at various stages of the composition proc-
ess. This usually assures a higher QoS.

 Automatic - In this approach the user in-
tervention is minim and the system has to
perform all validations.

Semi-automatic and automatic approaches
are mostly used. In these approaches the sys-
tem identifies a chain of web services that
together accomplish a certain task. The main
approaches are using workflows, templates
or AI planning. The workflow approach re-

52 Informatica Economică vol. 14, no. 4/2010

quires extensive domain knowledge and im-
plies a certain degree of manual implementa-
tion [7]. The template approaches relies on
OWL-S to store an outline of the required ac-
tions [8]. Once created, templates have the
advantage of being reusable. AI planning ap-
proaches are usually automatic so the user is
not required to have prior domain knowl-
edge. Such techniques try to automatically
generate the web service chain based on the
initial state and the desired goal state using
forward-chaining [9], backward-chaining
[10]. Petri-net based algebra, space search,
graph based planning, HTN - Hierarchical
Task Network planning, approaches based on
logical programming and others can also be
used [11].
Existing software reliability models were de-
veloped for statically built software applica-
tions. Given the differences between mono-
lithic approaches and approaches based on
creating applications from web services
many techniques developed for traditional
software, including the software reliability
models are no longer valid.
A common problem in the above mentioned
approaches is that multiple web services
might offer the requested functionality. Usu-
ally one of the services is selected based on
cost, performance criteria, reputation or a
combination of these attributes [12], [13].
In order to increase the overall web service
chain reliability we propose considering them

as built from abstract services. In the discov-
ery step, besides selecting the web service
which offers the best characteristics we also
store all the web services that offer the re-
quired functionality. If for any reason the
best web service will not be available at run-
time, one of the other web services will be
used.
An Abstract Service can be defined as a
group of web services that provide a specific
functionality. The abstract service is consid-
ered to fail only if all the services in the
group fail. A similar approach is taken in [5].
Therefore, the reliability of an abstract ser-
vice can be computed as:

ܴ௔௕௦௧௥௔௖௧ ൌ 1 െ ∏ ሺ1 െ ܴሺݏݓ௜ሻሻ௣
௜ୀଵ (8)

where ݌ is the number of web services that
offer the required functionality. If ݌ ൐ 1 then
ܴ௔௕௦௧௥௔௖௧ is closer to 1 than the reliability of
any of the web services in the corresponding
group. In other words, ܴ௔௕௦௧௥௔௖௧ ൒ ܴሺݏݓ௜ሻ .

5 Intelligent Agents Web Service Composi-
tion
We summarize bellow a web service compo-
sition approach based on intelligent agents
search that we presented in [14]. The main
components of the platform are presented in
Figure 2.

Fig. 2. Agent based Web Service Composition Framework

The Web Service Composition Designer al-
lows the user to create and modify web ser-
vice chains in an interactive manner. The
Composition Designer – CD Agent assists
the composition process. The Composition
Directory Facilitator – CDF Agent maintains

a list of all available agents. Applications that
want to execute a specific chain of web ser-
vices use the Composition Execution – CE
Agent. In order to facilitate the search, all
web services are represented as agents with
the associated input and output characteris-

Informatica Economică vol. 14, no. 4/2010 53

tics, named WSA.
The design of the newly created chain starts
in the WSC Designer Module where the user
has the possibility to either create a com-
pletely new chain or to modify an existing
one. From the user’s perspective the web
service chain is composed from a succession
of actions or sub-goals that must be per-
formed in order to achieve a certain goal.
Step 1: The CDA agent semantically queries
the CDF agent searching for Web Service
Agents that can perform the requested action.
The CDA agent stores the list of all found
agents and begins a parallel negotiation.
Step 2: Every candidate WSA agent com-
pares the request’s input data with the inter-
nally mapped web service or web service
chain input parameters. In case any input pa-
rameters don’t match, the WSA agent will it-
self query the CDF agent in order to find an
agent or a chain of agents capable of per-
forming the required transformation. If still
needed the found agents can themselves re-
peat the procedure. In order to limit the
search space a maximum number of agents
used to model an action can be specified.
Step 3: Each caller agent, including the CDA
verifies the correspondence between the
called WSA web service output parameters
and the requested output parameters. In case
any output parameters don’t match, an agent
capable of performing the required transfor-
mation will be searched using the CDF agent
similar to Step 3.
Step 4: All found services and chains are
displayed in the WSC Designer together with
their estimated reliability and execution time.
The following section of the paper expands
upon reliability evaluation of the web service
composition chains.
The resulting chain is stored so it can either
be executed using the Composition Execu-
tion – CE Agent or incorporated in new
chains. A corresponding WSA agent is cre-
ated and registered with the CDF agent.

6 Evaluating Reliability in Web Service
Composition Applications
The overall reliability of a system depends on
the reliability of its subsystems, which in turn

is influenced by the reliability of the compo-
nents and the reliability of the connections
between them. The expected Quality of Ser-
vice - QoS is an important criterion when
building a web service chain in most ap-
proaches. It is commonly used when several
services matching the requirements a found.
In order to select one of the several services
QoS is taken into consideration. Different
approaches are employed to select the servic-
es in a manner that will assure the highest
global QoS. [15] proposes an algorithm for
web service chaining in which the optimiza-
tion method is based on Multi-objective
Chaos Ant Colony Optimization - MCACO
that offers better results than previous ap-
proaches based on Multi-objective Genetic
Algorithms - MOGA [16]. Some approaches
propose extending the existing standards to
incorporate reliability information. One such
extension to the Web Service Description
Language – WSDL is called Q-WSDL (QoS
enabled WSDL) presented in [17] that adds
QoS information to the standard WSDL files.
The reliability prediction of the composite
service can be carried out:
 At design time – static prediction. The re-

liability of the web service chain is calcu-
lated at design time and the best web ser-
vices are selected. This approach offers a
better performance by performing the
evaluation at design time, rather than
slowing down the execution phase. Com-
plex algorithms can be used to assess the
reliability;

 At execution time – dynamic prediction.
The reliability prediction and selection of
web services is performed in the execution
phase. An advantage over the previous
approach is that dynamic prediction is not
affected if the available web services
change over time. The downside is related
to the additional execution time, which
leads to the necessity of using less com-
plex algorithms.

In our approach a mixed evaluation model is
used. Reliability is first evaluated at design
time when creating the web service chain in
order to choose the most reliable web service
chain. Storing all web services that match the

54 Informatica Economică vol. 14, no. 4/2010

required functionality allows changing at
runtime the selected web service if it is no
longer available. Thus, the reliability of the
web service chain is improved without slow-
ing down the execution.
Based on the reliability value for each web
service, the aggregate reliability can be cal-
culated as shown in [17]. The formulae were
introduced for evaluating web services, but
can be used to evaluate Abstract Services as
well:

 ܴௌ௘௤ – Reliability for a sequence:

 ܴௌ௘௤ ൌ ∏ ܴሺ݇ܿ݋݈ܤ௜ሻ௡
௜ୀଵ (9)

where ݊ is the number of blocks in the se-
quence. Blocks can be either individual web
services or chains composed of multiple web
services
 ܴௌ௪௜௧௖௛ – Reliability for switch blocks:

ܴௌ௪௜௧௖௛ ൌ ܴௌ௪௜௧௖௛்௘௦௧ כ ∑ ௜݌ ௠כ

௜ୀଵ ܴሺ݄ܿ݊ܽݎܤ௜ሻ (10)

where ݉ is the number of branches,
ܴௌ௪௜௧௖௛்௘௦௧ is the reliability of the condition
test and ݌௜ is the probability that branch ݅

will be selected. Therefore ∑ ௜݌ ൌ 1௠
௜ୀଵ . For a

switch with only two branches, the formula
can be rewritten:

ܴௌ௪௜௧௖௛ ൌ ܴௌ௪௜௧௖௛்௘௦௧ כ ∑ ሾ݌ כ ܴሺ்݄ܿ݊ܽݎܤ௥௨௘ሻ ൅ ሺ1 െ ሻ݌ כ ܴሺ݄ܿ݊ܽݎܤி௔௟௦௘

௡
௜ୀଵ ሻሿ (11)

 ܴ௅௢௢௣ – Reliability for loop blocks:

 ܴ௅௢௢௣ ൌ ሺܴ஼௢௡ௗ்௘௦௧ כ ܴ௅௢௢௣஻௟௢௖௞ሻ௅௢௢௣஼௢௨௡௧ (12)

where ܴ஼௢௡ௗ்௘௦௧ is the reliability of the loop
condition, ܴ௅௢௢௣஻௟௢௖௞ is the reliability of the

repeated block and ݐ݊ݑ݋ܥ݌݋݋ܮ is the num-
ber of times the block will be executed.

Fig. 3. Web Service Composition Chain Example

Figure 3 presents a simple web service chain
that generates invoices based on address
where products will be shipped. The first two
web services are from external providers,
while invoicing service is owned by the
company. For each abstract service, matching
web services are stored together with their
associated reliability. If only the best service
was stored and the framework was not able

to use an alternative service in case of failure,
the reliability would be equal to ܴ ൌ 0.91 כ
0.98 כ 0.97 ൌ 0.87. In our approach, based
on the fact that multiple services providing a
translation between an address and GPS
coordinates have been found, the reliability
equals

ܴ ൌ ሾ1 െ ሺ1 െ 0.91ሻ כ ሺ1 െ 0.9ሻ כ ሺ1 െ 0.87ሻሿ כ 0.98 כ 0.97 ൌ 0.95.

A drawback of the proposed approach is that
in some cases there can be only one web ser-
vice that matches the functionality require-

ments. In such a situation the system can
check the list of web services added after the
web service chain was designed to see if a

Informatica Economică vol. 14, no. 4/2010 55

matching service can be found. If no service
can be found, the execution of the chain will
fail.
Additionally if the application based on web
service composition will be used in a mobile
environment, several other reliability issues
should be taken into consideration [18]:
 Unreliable communication translates in

possible loss of signal during the execu-
tion of the web service chain or varia-
tions in the connection speed.

 Unreliable location information can af-
fect applications that require the users’
location in order to provide customized
information.

 Many methods used for reliability pre-
diction rely on past information regard-
ing the system’s behavior. Given the fact
that in mobile applications such as loca-
tion based services – LBS the context is
variable both in time and space, past in-
formation might not allow a good pre-
diction of the system’s behavior in the
future.

7 Conclusions
In this paper we presented a model for as-
sessing reliability in web service composition
applications based on intelligent agents. We
plan to extend the model in the future to take
other parameters into consideration such as
price and availability. We take into consider-
ation the implementation of a multi objective
genetic algorithm as an approach to select the
web services from each group in order to op-
timize the whole chain based on the selected
QoS attributes. Genetic algorithms would al-
low us to take an unlimited number of crite-
ria into consideration, by adding parameters
to the evaluation function. Assuring a trans-
actional behavior for the entire chain is
another important aspect including the possi-
bility to roll back the effects of the web ser-
vice chain if an error occurs.

Acknowledgement
This article is a result of the project „Doc-
toral Program and PhD Students in the edu-
cation research and innovation triangle”. This
project is co funded by European Social Fund

through The Sectorial Operational Program
for Human Resources Development 2007-
2013, coordinated by The Bucharest Acad-
emy of Economic Studies.

References
[1] X. Zhang, H. Pham, “An analysis of fac-

tors affecting software reliability”, Jour-
nal of Systems and Software, vol. 50, pp.
43-56, 2000.

[2] H. Pham, System software reliability.
Springer, 2006.

[3] H. Pham, “A new generalized systemabil-
ity model”, International Journal of Per-
formability Engineering, vol. 1, no. 2,
pp. 145-155, 2005.

[4] G. Canfora, M.D. Penta, and R. Esposito,
“An approach for QoS-aware service
composition based on genetic algo-
rithms”, Genetic And Evolutionary
Computation Conference, pp. 1069-
1075, 2005.

[5] H. Zo and D. Nazareth, “Measuring relia-
bility of applications composed of web
services”, System Sciences, 2007.
HICSS, pp. 1-10, 2007.

[6] R. Mohanty, V. Ravi, and M.R. Patra,
“Web-services classification using intel-
ligent techniques”, Expert Systems with
Applications, vol. 37, pp. 5484-5490,
Jul. 2010.

[7] J. Pathak, S. Basu, R. Lutz, and V. Hona-
var, “MoSCoE: A Framework for Mod-
eling Web Service Composition and Ex-
ecution”, 22nd International Conference
on Data Engineering Workshops (IC-
DEW’06), Ieee, p. x143-x143, 2006.

[8] G. Jie, C. Bo, C. Junliang, and Z. Lei, “A
Template-Based Orchestration Frame-
work for Hybrid Services”, 2008 Fourth
Advanced International Conference on
Telecommunications, pp. 315-320, 2008.

[9] R. Peng, Z. Mi, and L. Wang, “Research
on Converged Service Composition
Based on Extending CSTA Services with
OWL-S”, 2009 5th International Confe-
rence on Wireless Communications,
Networking and Mobile Computing, pp.
1-4, Sep. 2009.

[10] H.N. Talantikite, D. Aissani, and N.

56 Informatica Economică vol. 14, no. 4/2010

Boudjlida, “Semantic annotations for
web services discovery and composi-
tion”, Computer Standards & Interfaces,
vol. 31, pp. 1108-1117, 2009.

[11] V. Agarwal, G. Chafle, S. Mittal, and B.
Srivastava, “Understanding approaches
for web service composition and execu-
tion,” Proceedings of the 1st Bangalore
annual Compute conference on - Com-
pute ’08, 2008, pp. 1-8.

[12] J. Yan and J. Piao, “Towards QoS-
Based Web Services Discovery”, Lec-
ture Notes In Computer Science, p. 200–
210, 2009.

[13] J. El Hadad, M. Manouvrier, and M.
Rukoz, “TQoS: Transactional and QoS-
Aware Selection Algorithm for Auto-
matic Web Service Composition”, IEEE
Transactions on Services Computing,
vol. 3, pp. 73-85, Jan. 2010.

[14] L.A. Cotfas, A. Diosteanu, and I.
Smeureanu, “Fractal web service com-
position framework”, 2010 8th Interna-
tional Conference on Communications,
Bucharest: IEEE, pp. 405-408, 2010.

[15] W. Li, “A Web Service Composition

Algorithm Based on Global QoS Opti-
mizing with MOCACO”, Algorithms
and Architectures for Parallel
Processing, pp. 218-224, 2010.

[16] S. Liu, Y. Liu, N. Jing, and G. Tang, “A
dynamic web service selection strategy
with QoS global optimization based on
multi-objective genetic algorithm”, Grid
and Cooperative Computing, vol. 3795,
pp. 84 – 89, 2005.

[17] P. Bocciarelli and A. D’Ambrogio, “A
model-driven method for describing and
predicting the reliability of composite
services”, Software & Systems Modeling,
Feb. 2010.

[18] S. Malek, R. Roshandel, D. Kilgore, and
I. Elhag, “Improving the reliability of
mobile software systems through conti-
nuous analysis and proactive reconfigu-
ration”, 2009 31st International Confe-
rence on Software Engineering - Com-
panion Volume, pp. 275-278, May. 2009.

Liviu Adrian COTFAS is a Ph.D. student and a graduate of the Faculty of
Cybernetics, Statistics and Economic Informatics. He is currently conducting
research in Economic Informatics at Bucharest Academy of Economic Stud-
ies and he is also a Pre-Assistant Lecturer within the Department of Eco-
nomic Informatics. Amongst his fields of interest are location based services,
geographic information systems, genetic algorithms and web technologies.

Andreea DIOŞTEANU has graduated the Faculty of Economic Cybernetics,
Statistics and Informatics in 2008 as promotion leader, with an average of 10.
She is currently conducting research in Economic Informatics at Bucharest
Academy of Economic Studies. She is .NET programmer at TotalSoft.
During the bachelor years she participated in many student competitions both
at national and international level obtaining a lot of first and second prizes.
The most important competitions she was finalist in were Microsoft

International Imagine Cup Competition, Software Design section (national finalist); Berkley
University and IBM sponsored ICUBE competition were she qualified for the South Eastern
Phase-Novatech. Furthermore, she also obtained the “N.N Constantinescu” excellence
scholarship in 2007-2008 for the entire student research activity.

